Book Image

Python Parallel Programming Cookbook

By : Giancarlo Zaccone
Book Image

Python Parallel Programming Cookbook

By: Giancarlo Zaccone

Overview of this book

This book will teach you parallel programming techniques using examples in Python and will help you explore the many ways in which you can write code that allows more than one process to happen at once. Starting with introducing you to the world of parallel computing, it moves on to cover the fundamentals in Python. This is followed by exploring the thread-based parallelism model using the Python threading module by synchronizing threads and using locks, mutex, semaphores queues, GIL, and the thread pool. Next you will be taught about process-based parallelism where you will synchronize processes using message passing along with learning about the performance of MPI Python Modules. You will then go on to learn the asynchronous parallel programming model using the Python asyncio module along with handling exceptions. Moving on, you will discover distributed computing with Python, and learn how to install a broker, use Celery Python Module, and create a worker. You will understand anche Pycsp, the Scoop framework, and disk modules in Python. Further on, you will learnGPU programming withPython using the PyCUDA module along with evaluating performance limitations.
Table of Contents (13 chapters)
Python Parallel Programming Cookbook
About the Author
About the Reviewers

How to build a PyOpenCL application

As for programming with PyCUDA, the first step to build a program for PyOpenCL is the encoding of the host application. In fact, it is performed on the host computer (typically, the user's PC) and then it dispatches the kernel application on the connected devices (GPU cards).

The host application must contain five data structures:

  • Device: This identifies the hardware where the kernel code must be executed. A PyOpenCL application can be executed on CPU and GPU cards but also in embedded devices, such as Field Programmable Gate Array (FPGA).

  • Program: This is a group of kernels. A program selects the kernel that must be executed on the device.

  • Kernel: This is the code to be executed on the device. A kernel is essentially a C-like function that enables it to be compiled for execution on any device that supports OpenCL drivers. A kernel is the only way the host can call a function that will run on a device. When the host invokes a kernel, many work items start...