Book Image

Learning Python Design Patterns - Second Edition - Second Edition

By : Chetan Giridhar, Gennadiy Zlobin
Book Image

Learning Python Design Patterns - Second Edition - Second Edition

By: Chetan Giridhar, Gennadiy Zlobin

Overview of this book

With the increasing focus on optimized software architecture and design it is important that software architects think about optimizations in object creation, code structure, and interaction between objects at the architecture or design level. This makes sure that the cost of software maintenance is low and code can be easily reused or is adaptable to change. The key to this is reusability and low maintenance in design patterns. Building on the success of the previous edition, Learning Python Design Patterns, Second Edition will help you implement real-world scenarios with Python’s latest release, Python v3.5. We start by introducing design patterns from the Python perspective. As you progress through the book, you will learn about Singleton patterns, Factory patterns, and Façade patterns in detail. After this, we’ll look at how to control object access with proxy patterns. It also covers observer patterns, command patterns, and compound patterns. By the end of the book, you will have enhanced your professional abilities in software architecture, design, and development.
Table of Contents (19 chapters)
Learning Python Design Patterns Second Edition
Credits
Foreword
About the Author
About the Reviewer
www.PacktPub.com
Preface
Index

Understanding the Façade design pattern


The façade is generally referred to as the face of the building, especially an attractive one. It can be also referred to as a behavior or appearance that gives a false idea of someone's true feelings or situation. When people walk past a façade, they can appreciate the exterior face but aren't aware of the complexities of the structure within. This is how a façade pattern is used. Façade hides the complexities of the internal system and provides an interface to the client that can access the system in a very simplified way.

Consider the example of a storekeeper. Now, when you, as a customer, visit a store to buy certain items, you're not aware of the layout of the store. You typically approach the storekeeper, who is well aware of the store system. Based on your requirements, the storekeeper picks up items and hands them over to you. Isn't this easy? The customer need not know how the store looks and s/he gets the stuff done through a simple interface...