#### Overview of this book

Spatial statistics has the potential to provide insight that is not otherwise available through traditional GIS tools. This book is designed to introduce you to the use of spatial statistics so you can solve complex geographic analysis. The book begins by introducing you to the many spatial statistics tools available in ArcGIS. You will learn how to analyze patterns, map clusters, and model spatial relationships with these tools. Further on, you will explore how to extend the spatial statistics tools currently available in ArcGIS, and use the R programming language to create custom tools in ArcGIS through the ArcGIS Bridge using real-world examples. At the end of the book, you will be presented with two exciting case studies where you will be able to practically apply all your learning to analyze and gain insights into real estate data.
Title Page
Credits
www.PacktPub.com
Customer Feedback
Free Chapter
Introduction to Spatial Statistics in ArcGIS and R
Measuring Geographic Distributions with ArcGIS Tools
Analyzing Patterns with ArcGIS Tools
Modeling Spatial Relationships with ArcGIS Tools
Working with the Utilities Toolset
Introduction to the R Programming Language
Creating Custom ArcGIS Tools with ArcGIS Bridge and R
Application of Spatial Statistics to Crime Analysis
Application of Spatial Statistics to Real Estate Analysis

## Introduction to spatial statistics

Let's start with a definition of spatial statistics. The GIS dictionary (http://gisgeography.com/gis-dictionary-definition-glossary/) defines spatial statistics as the field of study concerning statistical methods that use space and spatial relationships (such as distance, area, volume, length, height, orientation, centrality, and/or other spatial characteristics of data) directly in their mathematical computations. Spatial statistics are used for a variety of different types of analyses, including pattern analysis, shape analysis, surface modeling and surface prediction, spatial regression, statistical comparisons of spatial datasets, statistical modeling and prediction of spatial interaction, and more. The many types of spatial statistics include descriptive, inferential, exploratory, geostatistical, and econometric statistics.

Spatial statistics are applicable across a wide range of environmental disciplines, including agriculture, geology, soil science, hydrology, ecology, oceanography, forestry, meteorology, and climatology, among others. Many socio-economic disciplines including epidemiology, crime analysis, real estate, planning, and others also benefit from spatial statistical analysis.

Spatial statistics can give answers to the following questions:

• How are the features distributed?
• What is the pattern created by the features?
• Which are the clusters?
• How do patterns and clusters of different variables compare to one another?
• What is the relationship between sets of features or values?