Book Image

QGIS Python Programming Cookbook, Second Edition - Second Edition

By : Joel Lawhead
Book Image

QGIS Python Programming Cookbook, Second Edition - Second Edition

By: Joel Lawhead

Overview of this book

QGIS is a desktop geographic information system that facilitates data viewing, editing, and analysis. Paired with the most efficient scripting language—Python, we can write effective scripts that extend the core functionality of QGIS. Based on version QGIS 2.18, this book will teach you how to write Python code that works with spatial data to automate geoprocessing tasks in QGIS. It will cover topics such as querying and editing vector data and using raster data. You will also learn to create, edit, and optimize a vector layer for faster queries, reproject a vector layer, reduce the number of vertices in a vector layer without losing critical data, and convert a raster to a vector. Following this, you will work through recipes that will help you compose static maps, create heavily customized maps, and add specialized labels and annotations. As well as this, we’ll also share a few tips and tricks based on different aspects of QGIS.
Table of Contents (16 chapters)
QGIS Python Programming Cookbook - Second Edition
About the Author
About the Reviewer
Customer Feedback

Creating a complex vector layer symbol

The true power of QGIS symbology lies in its ability to stack multiple symbols in order to create a single complex symbol. This ability makes it possible to create virtually any type of map symbol you can imagine. In this recipe, we'll merge two symbols to create a single symbol and begin unlocking the potential of complex symbols.

Getting ready

For this recipe, we will need a line shapefile, which you can download and extract from

Add this shapefile to a directory named shapes in your qgis_data directory.

How to do it...

Using Python Console, we will create a classic railroad line symbol by placing a series of short, rotated line markers along a regular line symbol. To do this, we need to perform the following steps:

  1. First, we load our line shapefile:

            lyr = QgsVectorLayer("/qgis_data/shapes/paths.shp", "Route", "ogr") 
  2. Next, we get the symbol list and reference the default symbol...