Book Image

PostgreSQL High Availability Cookbook - Second Edition

By : Shaun Thomas
Book Image

PostgreSQL High Availability Cookbook - Second Edition

By: Shaun Thomas

Overview of this book

Databases are nothing without the data they store. In the event of a failure - catastrophic or otherwise - immediate recovery is essential. By carefully combining multiple servers, it’s even possible to hide the fact a failure occurred at all. From hardware selection to software stacks and horizontal scalability, this book will help you build a versatile PostgreSQL cluster that will survive crashes, resist data corruption, and grow smoothly with customer demand. It all begins with hardware selection for the skeleton of an efficient PostgreSQL database cluster. Then it’s on to preventing downtime as well as troubleshooting some real life problems that administrators commonly face. Next, we add database monitoring to the stack, using collectd, Nagios, and Graphite. And no stack is complete without replication using multiple internal and external tools, including the newly released pglogical extension. Pacemaker or Raft consensus tools are the final piece to grant the cluster the ability to heal itself. We even round off by tackling the complex problem of data scalability. This book exploits many new features introduced in PostgreSQL 9.6 to make the database more efficient and adaptive, and most importantly, keep it running.
Table of Contents (18 chapters)
Title Page
Credits
About the Author
About the Reviewer
www.Packtpub.com
Customer Feedback
Preface

Evaluating PgBouncer pool health


Though PgBouncer provides similar information regarding both server and client database connections, the status and health of each pool are also available. If we didn't already clarify, PgBouncer pools are separated by username, database name, and the server's hostname. Thus, each PostgreSQL server may have as many connection pools as there are different databases a user might access via PgBouncer.

PgBouncer supplies somewhat detailed information when seeking server or client status. However, these are not database views, so we can't summarize or aggregate the output to make it more usable. When running a highly available database server, we need to monitor aggregate values, if possible, to watch for potential patterns of misconfiguration or abuse.

Unfortunately, since PgBouncer acts as a proxy, we can't rely on the pg_stat_activity system view for summaries. This means PgBouncer and its administrative console are the main sources of debugging and status information...