Book Image

PostgreSQL High Availability Cookbook - Second Edition

By : Shaun Thomas
Book Image

PostgreSQL High Availability Cookbook - Second Edition

By: Shaun Thomas

Overview of this book

Databases are nothing without the data they store. In the event of a failure - catastrophic or otherwise - immediate recovery is essential. By carefully combining multiple servers, it’s even possible to hide the fact a failure occurred at all. From hardware selection to software stacks and horizontal scalability, this book will help you build a versatile PostgreSQL cluster that will survive crashes, resist data corruption, and grow smoothly with customer demand. It all begins with hardware selection for the skeleton of an efficient PostgreSQL database cluster. Then it’s on to preventing downtime as well as troubleshooting some real life problems that administrators commonly face. Next, we add database monitoring to the stack, using collectd, Nagios, and Graphite. And no stack is complete without replication using multiple internal and external tools, including the newly released pglogical extension. Pacemaker or Raft consensus tools are the final piece to grant the cluster the ability to heal itself. We even round off by tackling the complex problem of data scalability. This book exploits many new features introduced in PostgreSQL 9.6 to make the database more efficient and adaptive, and most importantly, keep it running.
Table of Contents (18 chapters)
Title Page
Credits
About the Author
About the Reviewer
www.Packtpub.com
Customer Feedback
Preface

Maintaining an XFS filesystem


Conventional wisdom regarding Linux filesystems suggests that file defragmentation is not a necessary task. While this is true in general, file fragmentation isn't something we should allow to spiral out of control. PostgreSQL storage files are limited to 1 GB in size, yet we configured XFS to pre-allocate no more than 1 MB at a time.

This introduces the potential for data fragmentation on OLTP systems or any database cluster where several tables experience high turnover. To prevent this from adversely affecting sequential scans, and to promote good filesystem health in general, we need to track and potentially correct overly fragmented files.

XFS provides two tools suited to this activity. The first is xfs_db, which provides information about an XFS filesystem. The second is xfs_fsr, which allows us to defragment XFS while it is still mounted and active. This recipe will cover the basic usage of these tools to keep our high availability server performing well...