Book Image

Learning Functional Programming in Go

By : Lex Sheehan
Book Image

Learning Functional Programming in Go

By: Lex Sheehan

Overview of this book

Lex Sheehan begins slowly, using easy-to-understand illustrations and working Go code to teach core functional programming (FP) principles such as referential transparency, laziness, recursion, currying, and chaining continuations. This book is a tutorial for programmers looking to learn FP and apply it to write better code. Lex guides readers from basic techniques to advanced topics in a logical, concise, and clear progression. The book is divided into four modules. The first module explains the functional style of programming: pure functional programming, manipulating collections, and using higher-order functions. In the second module, you will learn design patterns that you can use to build FP-style applications. In the next module, you will learn FP techniques that you can use to improve your API signatures, increase performance, and build better cloud-native applications. The last module covers Category Theory, Functors, Monoids, Monads, Type classes and Generics. By the end of the book, you will be adept at building applications the FP way.
Table of Contents (21 chapters)
Title Page
Credits
About the Author
Acknowledgments
About the Reviewer
www.PacktPub.com
Customer Feedback
Preface
Index

Composition operation


The composition operation, g.f or g after f, applies function f to x (which takes us from A to B) and passes the result of that to g (which takes us from B to C), and that nested set of operations is equivalent to the composition operation of g.f.

In Haskell, we define our composition operation on the first line and request to see the type definition of our composition operation on the second line. The third line is what the composition means:

> (.) g f = \x -> g (f x)
> :t (.)
(.) :: (b -> c) -> (a -> b) -> a -> c

The a, b, and c above correspond to the A, B, and C in the following diagram.

It says, when we pass  the A to B function (f) to the B to C function (g), we get the A to C function (g.f).

This is basic composition. Assuming we start at A, this diagram says we can get to C either by way of B (A to B to C) or by going directly from A to C. When we choose the short route (A to C), or g.f, we compose g and f in a nested manner, like g(f(x))...