Book Image

Mastering Embedded Linux Programming - Second Edition

By : Chris Simmonds
Book Image

Mastering Embedded Linux Programming - Second Edition

By: Chris Simmonds

Overview of this book

Embedded Linux runs many of the devices we use every day, from smart TVs to WiFi routers, test equipment to industrial controllers - all of them have Linux at their heart. Linux is a core technology in the implementation of the inter-connected world of the Internet of Things. The comprehensive guide shows you the technologies and techniques required to build Linux into embedded systems. You will begin by learning about the fundamental elements that underpin all embedded Linux projects: the toolchain, the bootloader, the kernel, and the root filesystem. You’ll see how to create each of these elements from scratch, and how to automate the process using Buildroot and the Yocto Project. Moving on, you’ll find out how to implement an effective storage strategy for flash memory chips, and how to install updates to the device remotely once it is deployed. You’ll also get to know the key aspects of writing code for embedded Linux, such as how to access hardware from applications, the implications of writing multi-threaded code, and techniques to manage memory in an efficient way. The final chapters show you how to debug your code, both in applications and in the Linux kernel, and how to profile the system so that you can look out for performance bottlenecks. By the end of the book, you will have a complete overview of the steps required to create a successful embedded Linux system.
Table of Contents (17 chapters)

Introducing device trees

If you are working with ARM or PowerPC SoCs, you are almost certainly going to encounter device trees at some point. This section aims to give you a quick overview of what they are and how they work, but there are many details that are not discussed.

A device tree is a flexible way to define the hardware components of a computer system. Usually, the device tree is loaded by the bootloader and passed to the kernel, although it is possible to bundle the device tree with the kernel image itself to cater for bootloaders that are not capable of loading them separately.

The format is derived from a Sun Microsystems bootloader known as OpenBoot, which was formalized as the Open Firmware specification, which is IEEE standard IEEE1275-1994. It was used in PowerPC-based Macintosh computers and so was a logical choice for the PowerPC Linux port. Since then, it has...