Book Image

Mastering Embedded Linux Programming - Second Edition

By : Chris Simmonds
Book Image

Mastering Embedded Linux Programming - Second Edition

By: Chris Simmonds

Overview of this book

Embedded Linux runs many of the devices we use every day, from smart TVs to WiFi routers, test equipment to industrial controllers - all of them have Linux at their heart. Linux is a core technology in the implementation of the inter-connected world of the Internet of Things. The comprehensive guide shows you the technologies and techniques required to build Linux into embedded systems. You will begin by learning about the fundamental elements that underpin all embedded Linux projects: the toolchain, the bootloader, the kernel, and the root filesystem. You’ll see how to create each of these elements from scratch, and how to automate the process using Buildroot and the Yocto Project. Moving on, you’ll find out how to implement an effective storage strategy for flash memory chips, and how to install updates to the device remotely once it is deployed. You’ll also get to know the key aspects of writing code for embedded Linux, such as how to access hardware from applications, the implications of writing multi-threaded code, and techniques to manage memory in an efficient way. The final chapters show you how to debug your code, both in applications and in the Linux kernel, and how to profile the system so that you can look out for performance bottlenecks. By the end of the book, you will have a complete overview of the steps required to create a successful embedded Linux system.
Table of Contents (17 chapters)

Storage options

Embedded devices need storage that takes little power and is physically compact, robust, and reliable over a lifetime of perhaps tens of years. In almost all cases, this means solid-state storage. Solid-state storage was introduced many years ago with read-only memory (ROM), but for the past 20 years, it has been flash memory of some kind. There have been several generations of flash memory in that time, progressing from NOR to NAND to managed flash such as eMMC.

NOR flash is expensive but reliable and can be mapped into the CPU address space, which allows you to execute code directly from flash. NOR flash chips are low capacity, ranging from a few megabytes to a gigabyte or so.

NAND flash memory is much cheaper than NOR and is available in higher capacities, in the range of tens of megabytes to tens of gigabytes. However, it needs a lot of hardware and software...