Book Image

Mastering Embedded Linux Programming - Second Edition

By : Chris Simmonds
Book Image

Mastering Embedded Linux Programming - Second Edition

By: Chris Simmonds

Overview of this book

Embedded Linux runs many of the devices we use every day, from smart TVs to WiFi routers, test equipment to industrial controllers - all of them have Linux at their heart. Linux is a core technology in the implementation of the inter-connected world of the Internet of Things. The comprehensive guide shows you the technologies and techniques required to build Linux into embedded systems. You will begin by learning about the fundamental elements that underpin all embedded Linux projects: the toolchain, the bootloader, the kernel, and the root filesystem. You’ll see how to create each of these elements from scratch, and how to automate the process using Buildroot and the Yocto Project. Moving on, you’ll find out how to implement an effective storage strategy for flash memory chips, and how to install updates to the device remotely once it is deployed. You’ll also get to know the key aspects of writing code for embedded Linux, such as how to access hardware from applications, the implications of writing multi-threaded code, and techniques to manage memory in an efficient way. The final chapters show you how to debug your code, both in applications and in the Linux kernel, and how to profile the system so that you can look out for performance bottlenecks. By the end of the book, you will have a complete overview of the steps required to create a successful embedded Linux system.
Table of Contents (17 chapters)

The basics of software update

Updating software seems, at first sight, to be a simple task: you just need to overwrite some files with new copies. But then your engineer's training kicks in as you begin to realize all the things that could go wrong. What if the power goes down during the update? What if a bug, not seen while testing the update, renders a percentage of the devices unbootable? What if a third party sends a fake update that enlists your device as part of a botnet? At the very least the software update mechanism must be:

  • Robust, so that an update does not render the device unusable
  • Fail-safe, so that there is a fall-back mode if all else fails
  • Secure, to prevent the device from being hijacked by people installing unauthorized updates

In other words, we need a system that is not susceptible to Murphy's law, which states that if something can go wrong, then...