Book Image

Learning Concurrency in Python

By : Elliot Forbes
Book Image

Learning Concurrency in Python

By: Elliot Forbes

Overview of this book

Python is a very high level, general purpose language that is utilized heavily in fields such as data science and research, as well as being one of the top choices for general purpose programming for programmers around the world. It features a wide number of powerful, high and low-level libraries and frameworks that complement its delightful syntax and enable Python programmers to create. This book introduces some of the most popular libraries and frameworks and goes in-depth into how you can leverage these libraries for your own high-concurrent, highly-performant Python programs. We'll cover the fundamental concepts of concurrency needed to be able to write your own concurrent and parallel software systems in Python. The book will guide you down the path to mastering Python concurrency, giving you all the necessary hardware and theoretical knowledge. We'll cover concepts such as debugging and exception handling as well as some of the most popular libraries and frameworks that allow you to create event-driven and reactive systems. By the end of the book, you'll have learned the techniques to write incredibly efficient concurrent systems that follow best practices.
Table of Contents (20 chapters)
Title Page
Credits
About the Author
About the Reviewer
www.PacktPub.com
Customer Feedback
Preface
Index

Understanding parallelism


In the first chapter, we covered a bit about Python's multiprocessing capabilities, and how we could use this to take advantage of more of the processing cores in our hardware. But what do we mean when we say that our programs are running in parallel?

Parallelism is the art of executing two or more actions simultaneously as opposed to concurrency in which you make progress on two or more things at the same time. This is an important distinction, and in order to achieve true parallelism, we'll need multiple processors on which to run our code at the same time.

A good analogy for parallel processing is to think of a queue for Coke. If you have, say, two queues of 20 people, all waiting to use a coke machine so that they can get through the rest of the day with a bit of a sugar rush, well, this would be an example of concurrency. Now say you were to introduce a second coke machine into the mix--this would then be an example of something happening in parallel. This is...