Book Image

Learning Concurrency in Python

By : Elliot Forbes
Book Image

Learning Concurrency in Python

By: Elliot Forbes

Overview of this book

Python is a very high level, general purpose language that is utilized heavily in fields such as data science and research, as well as being one of the top choices for general purpose programming for programmers around the world. It features a wide number of powerful, high and low-level libraries and frameworks that complement its delightful syntax and enable Python programmers to create. This book introduces some of the most popular libraries and frameworks and goes in-depth into how you can leverage these libraries for your own high-concurrent, highly-performant Python programs. We'll cover the fundamental concepts of concurrency needed to be able to write your own concurrent and parallel software systems in Python. The book will guide you down the path to mastering Python concurrency, giving you all the necessary hardware and theoretical knowledge. We'll cover concepts such as debugging and exception handling as well as some of the most popular libraries and frameworks that allow you to create event-driven and reactive systems. By the end of the book, you'll have learned the techniques to write incredibly efficient concurrent systems that follow best practices.
Table of Contents (20 chapters)
Title Page
Credits
About the Author
About the Reviewer
www.PacktPub.com
Customer Feedback
Preface
Index

System architecture styles


When designing your programs, it's important to note that there are a number of different memory architecture styles that suit the needs of a range of different use cases. One style of memory architecture could be excellent for parallel computing tasks and scientific computing, but somewhat cumbersome when it comes to your standard home-computing tasks.

When we categorize these different styles, we tend to follow a taxonomy first proposed by a man named Michael Flynn in 1972. This taxonomy defines four different styles of computer architecture. These are:

  • SISD: single instruction stream, single data stream
  • SIMD: single instruction stream, multiple data stream
  • MISD: multiple instruction stream, single data stream
  • MIMD: multiple instruction stream, multiple data stream

We will look in more detail at these architectures in the following sections.

SISD

Single Instruction streams, Single Data streams tend to be your uniprocessor systems. These systems have one sequential stream...