Book Image

Julia Programming Projects

By : Adrian Salceanu
Book Image

Julia Programming Projects

By: Adrian Salceanu

Overview of this book

Julia is a new programming language that offers a unique combination of performance and productivity. Its powerful features, friendly syntax, and speed are attracting a growing number of adopters from Python, R, and Matlab, effectively raising the bar for modern general and scientific computing. After six years in the making, Julia has reached version 1.0. Now is the perfect time to learn it, due to its large-scale adoption across a wide range of domains, including fintech, biotech, education, and AI. Beginning with an introduction to the language, Julia Programming Projects goes on to illustrate how to analyze the Iris dataset using DataFrames. You will explore functions and the type system, methods, and multiple dispatch while building a web scraper and a web app. Next, you'll delve into machine learning, where you'll build a books recommender system. You will also see how to apply unsupervised machine learning to perform clustering on the San Francisco business database. After metaprogramming, the final chapters will discuss dates and time, time series analysis, visualization, and forecasting. We'll close with package development, documenting, testing and benchmarking. By the end of the book, you will have gained the practical knowledge to build real-world applications in Julia.
Table of Contents (19 chapters)
Title Page
Copyright and Credits
Dedication
About Packt
Contributors
Preface
Index

Defining the date ranges


Julia allows us to define ranges of dates to express continuous periods of time. For example, we could represent the whole year as the range of days between January 1 and December 31:

julia> year_2019 = Date(2019, 1, 1):Day(1):Date(2019,12,31) 
2019-01-01:1 day:2019-12-31

We have created a date range with a step of one day—so 365 items, since 2019 is not a leap year:

julia> typeof(year_2019) 
StepRange{Date,Day} 

julia> size(year_2019) 
(365,)

We can instantiate the actual Date objects using the aptly named collect function:

julia> collect(year_2019) 
365-element Array{Date,1}: 
 2019-01-01 
 2019-01-02 
 2019-01-03 
# output truncated

Also, of course, we can access the elements by index as follows:

julia> year_2019[100] # day 100 
2019-04-10

It's also possible to define ranges with other steps, such as monthly intervals:

julia> year_2019 = Date(2019, 1, 1):Month(1):Date(2019,12,31) 
2019-01-01:1 month:2019-12-01 

julia> collect(year_2019) # First day...