Book Image

Java 9 Dependency Injection

By : Nilang Patel, Krunal Patel
3 (1)
Book Image

Java 9 Dependency Injection

3 (1)
By: Nilang Patel, Krunal Patel

Overview of this book

Dependency Injection (DI) is a design pattern that allows us to remove the hard-coded dependencies and make our application loosely coupled, extendable, and maintainable. We can implement DI to move the dependency resolution from compile-time to runtime. This book will be your one stop guide to write loosely coupled code using the latest features of Java 9 with frameworks such as Spring 5 and Google Guice. We begin by explaining what DI is and teaching you about IoC containers. Then you’ll learn about object compositions and their role in DI. You’ll find out how to build a modular application and learn how to use DI to focus your efforts on the business logic unique to your application and let the framework handle the infrastructure work to put it all together. Moving on, you’ll gain knowledge of Java 9’s new features and modular framework and how DI works in Java 9. Next, we’ll explore Spring and Guice, the popular frameworks for DI. You’ll see how to define injection keys and configure them at the framework-specific level. After that, you’ll find out about the different types of scopes available in both popular frameworks. You’ll see how to manage dependency of cross-cutting concerns while writing applications through aspect-oriented programming. Towards the end, you’ll learn to integrate any third-party library in your DI-enabled application and explore common pitfalls and recommendations to build a solid application with the help of best practices, patterns, and anti-patterns in DI.
Table of Contents (14 chapters)
Title Page
Copyright and Credits
Packt Upsell
Contributors
Preface
Index

Design patterns


By definition, a design pattern is a set of proven de facto industry standards and best practices for resolving recurring problems. Design patterns are not ready-made solutions. Rather, they're a way or template to implement and apply the best possible solution for your problem.

It's equally true that if a design pattern is not implemented in the right way, it creates a lot of problems rather than solving the one you expected to solve. So it's very important to know which design pattern, if any, is right for a specific scenario.

Design patterns are a common paradigm to describe the problem and how to solve it. It's usually not language specific. Design patterns can protect you from the design problems that generally occur in the later stages of development.

There are numerous advantages to using design patterns, as follows:

  • Improves software reusability
  • Development cycle becomes faster
  • Makes the code more readable and maintainable
  • Increases the efficiency and enhances the overall software development
  • Provides common vocabulary to describe problems and best possible solutions in a more abstract way

And you can count many more. In the following sections, we will gain a deep understanding of how to make your code modular, loosely coupled, independent, testable, and maintainable, by following certain principles and patterns.

This chapter will cover in-depth ideas about the Dependency Inversion Principle (DIP), the Inversion of Control paradigm, and DI design pattern.

Note

Most developers use the terms design principle and design pattern interchangeably, even though there is a difference between them.

Design principle: Generically, this is a guideline about what is the right way and what is the wrong way to design your application. Design principles always talk about what to do instead of how to do it.

Design patterns: A generic and reusable solution for commonly occurring problems. Design patterns talk about how to solve the problems in a given software design context by providing clear methodologies.

The first step towards making your code cleaner, readable, decoupled, maintainable, and modular is to learn the design principle called DIP.