Book Image

Rust High Performance

By : Iban Eguia Moraza
Book Image

Rust High Performance

By: Iban Eguia Moraza

Overview of this book

This book teaches you how to optimize the performance of your Rust code so that it is at the same level as languages such as C/C++. You'll understand and fi x common pitfalls, learn how to improve your productivity by using metaprogramming, and speed up your code. You will master the features of the language, which will make you stand out, and use them to greatly improve the efficiency of your algorithms. The book begins with an introduction to help you identify bottlenecks when programming in Rust. We highlight common performance pitfalls, along with strategies to detect and resolve these issues early. We move on to mastering Rust's type system, which will enable us to optimize both performance and safety at compile time. You will learn how to effectively manage memory in Rust, mastering the borrow checker. We move on to measuring performance and you will see how this affects the way you write code. Moving forward, you will perform metaprogramming in Rust to boost the performance of your code and your productivity. Finally, you will learn parallel programming in Rust, which enables efficient and faster execution by using multithreading and asynchronous programming.
Table of Contents (19 chapters)
Title Page
Copyright and Credits
Dedication
Packt Upsell
Contributors
Preface
Index

Creating your own standard macros


Since Rust 1.0, we have had a great macro system. Macros allow us to apply some code to multiple types or expressions, as they work by expanding themselves at compile time. This means that when you use a macro, you are effectively writing a lot of code before the actual compilation starts. This has two main benefits, first, the codebase can be easier to maintain by being smaller and reusing code, and second, since macros expand before starting the creation of object code, you can abstract at the syntactic level.

For example, you can have a function like this one:

fn add_one(input: u32) -> u32 {
    input + 1
}

This function restricts the input to u32 types and the return type to u32. We could add some more accepted types by using generics, which may accept &u32 if we use the Add trait. Macros allow us to create this kind of code for any element that can be written to the left of the + sign and it will be expanded differently for each type of element...