Book Image

Delphi High Performance

By : Primož Gabrijelčič
Book Image

Delphi High Performance

By: Primož Gabrijelčič

Overview of this book

Delphi is a cross-platform Integrated Development Environment (IDE) that supports rapid application development for Microsoft Windows, Apple Mac OS X, Google Android, iOS, and now Linux with RAD Studio 10.2. This book will be your guide to build efficient high performance applications with Delphi. The book begins by explaining how to find performance bottlenecks and apply the correct algorithm to fix them. It will teach you how to improve your algorithms before taking you through parallel programming. You’ll then explore various tools to build highly concurrent applications. After that, you’ll delve into improving the performance of your code and master cross-platform RTL improvements. Finally, we’ll go through memory management with Delphi and you’ll see how to leverage several external libraries to write better performing programs. By the end of the book, you’ll have the knowledge to create high performance applications with Delphi.
Table of Contents (16 chapters)
Title Page
Copyright and Credits
Packt Upsell

Processes and threads

As a programmer, you probably have already some understanding about what a process is. As operating systems look at it, a process is a rough equivalent of an application. When a user starts an application, an operating system creates and starts a new process. The process owns the application code and all the resources that this code uses—memory, file handles, device handles, sockets, windows, and so on.

When the program is executing, the system must also keep track of the current execution address, state of the CPU registers, and state of the program's stack. This information, however, is not part of the process, but of a thread belonging to this process. Even the simplest program uses one thread. 

In other words, the process represents the program's static data while the thread represents the dynamic part. During the program's lifetime, the thread describes its line of execution. If we know the state of the thread at every moment, we can fully reconstruct the execution...