Book Image

Functional Python Programming - Second Edition

By : Steven F. Lott
Book Image

Functional Python Programming - Second Edition

By: Steven F. Lott

Overview of this book

If you’re a Python developer who wants to discover how to take the power of functional programming (FP) and bring it into your own programs, then this book is essential for you, even if you know next to nothing about the paradigm. Starting with a general overview of functional concepts, you’ll explore common functional features such as first-class and higher-order functions, pure functions, and more. You’ll see how these are accomplished in Python 3.6 to give you the core foundations you’ll build upon. After that, you’ll discover common functional optimizations for Python to help your apps reach even higher speeds. You’ll learn FP concepts such as lazy evaluation using Python’s generator functions and expressions. Moving forward, you’ll learn to design and implement decorators to create composite functions. You'll also explore data preparation techniques and data exploration in depth, and see how the Python standard library fits the functional programming model. Finally, to top off your journey into the world of functional Python, you’ll at look at the PyMonad project and some larger examples to put everything into perspective.
Table of Contents (22 chapters)
Title Page
Packt Upsell

Learning some advanced concepts

We will set some more advanced concepts aside for consideration in later chapters. These concepts are part of the implementation of a purely functional language. Since Python isn't purely functional, our hybrid approach won't require deep consideration of these topics.

We will identify these up front for the benefit of folks who already know a functional language such as Haskell and are learning Python. The underlying concerns are present in all programming languages but we'll tackle them differently in Python. In many cases, we can and will drop into imperative programming rather than use a strictly functional approach.

The topics are as follows:

  • Referential transparency: When looking at lazy evaluation and the various kinds of optimizations that are possible in a compiled language, the idea of multiple routes to the same object is important. In Python, this isn't as important because there aren't any relevant compile-time optimizations.
  • Currying: The type systems...