Book Image

Mastering Python Design Patterns - Second Edition

By : Kamon Ayeva, Sakis Kasampalis
Book Image

Mastering Python Design Patterns - Second Edition

By: Kamon Ayeva, Sakis Kasampalis

Overview of this book

Python is an object-oriented scripting language that is used in a wide range of categories. In software engineering, a design pattern is an elected solution for solving software design problems. Although they have been around for a while, design patterns remain one of the top topics in software engineering, and are a ready source for software developers to solve the problems they face on a regular basis. This book takes you through a variety of design patterns and explains them with real-world examples. You will get to grips with low-level details and concepts that show you how to write Python code, without focusing on common solutions as enabled in Java and C++. You'll also fnd sections on corrections, best practices, system architecture, and its designing aspects. This book will help you learn the core concepts of design patterns and the way they can be used to resolve software design problems. You'll focus on most of the Gang of Four (GoF) design patterns, which are used to solve everyday problems, and take your skills to the next level with reactive and functional patterns that help you build resilient, scalable, and robust applications. By the end of the book, you'll be able to effciently address commonly faced problems and develop applications, and also be comfortable working on scalable and maintainable projects of any size.
Table of Contents (17 chapters)

Implementation

Assume that we want to create an operating system using a multi-server approach, similar to how it is done in MINIX 3 (j.mp/minix3) or GNU Hurd (j.mp/gnuhurd). A multiserver operating system has a minimal kernel, called the microkernel, which runs in privileged mode. All the other services of the system are following a server architecture (driver server, process server, file server, and so forth). Each server belongs to a different memory address space and runs on top of the microkernel in user mode. The pros of this approach are that the operating system can become more fault-tolerant, reliable, and secure. For example, since all drivers are running in user mode on a driver server, a bug in a driver cannot crash the whole system, nor can it affect the other servers. The cons of this approach are the performance overhead and the complexity of system programming...