Book Image

Hands-On Data Structures and Algorithms with Rust

By : Claus Matzinger
Book Image

Hands-On Data Structures and Algorithms with Rust

By: Claus Matzinger

Overview of this book

Rust has come a long way and is now utilized in several contexts. Its key strengths are its software infrastructure and resource-constrained applications, including desktop applications, servers, and performance-critical applications, not forgetting its importance in systems' programming. This book will be your guide as it takes you through implementing classic data structures and algorithms in Rust, helping you to get up and running as a confident Rust programmer. The book begins with an introduction to Rust data structures and algorithms, while also covering essential language constructs. You will learn how to store data using linked lists, arrays, stacks, and queues. You will also learn how to implement sorting and searching algorithms. You will learn how to attain high performance by implementing algorithms to string data types and implement hash structures in algorithm design. The book will examine algorithm analysis, including Brute Force algorithms, Greedy algorithms, Divide and Conquer algorithms, Dynamic Programming, and Backtracking. By the end of the book, you will have learned how to build components that are easy to understand, debug, and use in different applications.
Table of Contents (15 chapters)

The Big O notation

Physics is not a topic in this book, but its influence is far-reaching and powerful enough to be obeyed everywhere, even by virtual constructs such as algorithms! However great their design, they still are constrained by two important factors: time and space.

Time? Whenever anything needs to be done, a sequence of steps is required. By multiplying the number of steps by the time for each step, the total—absolute—time is easy to calculate. Or so we think. For computers, this is mostly true, but many questions make it very hard to really know, since modern CPUs go way beyond what previous generations were able to achieve. Is that only thanks to higher clock rates? What about the additional cores? SIMD? Simply taking the absolute time won't achieve real comparability between algorithms. Maybe the number of steps is what we should use.

Space ...