Book Image

Julia 1.0 Programming - Second Edition

By : Ivo Balbaert
Book Image

Julia 1.0 Programming - Second Edition

By: Ivo Balbaert

Overview of this book

The release of Julia 1.0 is now ready to change the technical world by combining the high productivity and ease of use of Python and R with the lightning-fast speed of C++. Julia 1.0 programming gives you a head start in tackling your numerical and data problems. You will begin by learning how to set up a running Julia platform, before exploring its various built-in types. With the help of practical examples, this book walks you through two important collection types: arrays and matrices. In addition to this, you will be taken through how type conversions and promotions work. In the course of the book, you will be introduced to the homo-iconicity and metaprogramming concepts in Julia. You will understand how Julia provides different ways to interact with an operating system, as well as other languages, and then you'll discover what macros are. Once you have grasped the basics, you’ll study what makes Julia suitable for numerical and scientific computing, and learn about the features provided by Julia. By the end of this book, you will also have learned how to run external programs. This book covers all you need to know about Julia in order to leverage its high speed and efficiency for your applications.
Table of Contents (17 chapters)
Title Page
Copyright and Credits
Packt Upsell
Contributors
Preface
Index

Types


Julia's type system is unique. Julia behaves as a dynamically typed language (such as Python, for instance) most of the time. This means that a variable bound to an integer at one point might later be bound to a string. For example, consider the following:

julia> x = 1010julia> x = "hello""hello"

However, one can, optionally, add type information to a variable. This causes the variable to only accept values that match that specific type. This is done through a type of annotation. For instance, declaring x::String implies that only strings can be bound to x; in general, it looks like var::TypeName. These are used the most often to qualify the arguments a function can take. The extra type information is useful for documenting the code, and often allows the JIT compiler to generate better-optimized native code. It also allows the development environments to give more support, and code tools such as a linter that can check your code for possible wrong type use.

Here is an example: a...