Book Image

Julia 1.0 Programming. - Second Edition

By : Ivo Balbaert
Book Image

Julia 1.0 Programming. - Second Edition

By: Ivo Balbaert

Overview of this book

The release of Julia 1.0 is now ready to change the technical world by combining the high productivity and ease of use of Python and R with the lightning-fast speed of C++. Julia 1.0 programming gives you a head start in tackling your numerical and data problems. You will begin by learning how to set up a running Julia platform, before exploring its various built-in types. With the help of practical examples, this book walks you through two important collection types: arrays and matrices. In addition to this, you will be taken through how type conversions and promotions work. In the course of the book, you will be introduced to the homo-iconicity and metaprogramming concepts in Julia. You will understand how Julia provides different ways to interact with an operating system, as well as other languages, and then you'll discover what macros are. Once you have grasped the basics, you’ll study what makes Julia suitable for numerical and scientific computing, and learn about the features provided by Julia. By the end of this book, you will also have learned how to run external programs. This book covers all you need to know about Julia in order to leverage its high speed and efficiency for your applications.
Table of Contents (17 chapters)
Title Page
Copyright and Credits
Packt Upsell

Scope and constants

The region in the program where a variable is known is called thescopeof that variable. Until now, we have only seen how to create top-level or global variables that are accessible from anywhere in the program. By contrast, variables defined in a local scope can only be used within that scope. A common example of a local scope is the code inside a function. Using global scope variables is not advisable for several reasons, notably the performance. If the value and type can change at any moment in the program, the compiler cannot optimize the code.

So, restricting the scope of a variable to local scope is better. This can be done by defining them within a function or a control construct, as we will see in the following chapters. This way, we can use the same variable name more than once without name conflicts.

Let's take a look at the following code fragment:

# code in chapter 2\scope.jl 
x = 1.0 # x is Float64 
x = 1 # now x is Int 
y::Float64 = 1.0  
# ERROR: syntax: type...