Book Image

Java: High-Performance Apps with Java 9

By : Mayur Ramgir
Book Image

Java: High-Performance Apps with Java 9

By: Mayur Ramgir

Overview of this book

Java 9 which is one of the most popular application development languages. The latest released version Java 9 comes with a host of new features and new APIs with lots of ready to use components to build efficient and scalable applications. Streams, parallel and asynchronous processing, multithreading, JSON support, reactive programming, and microservices comprise the hallmark of modern programming and are now fully integrated into the JDK. This book focuses on providing quick, practical solutions to enhance your application's performance. You will explore the new features, APIs, and various tools added in Java 9 that help to speed up the development process. You will learn about jshell, Ahead-of-Time (AOT) compilation, and the basic threads related topics including sizing and synchronization. You will also explore various strategies for building microservices including container-less, self-contained, and in-container. This book is ideal for developers who would like to build reliable and high-performance applications with Java. This book is embedded with useful assessments that will help you revise the concepts you have learned in this book. This book is repurposed for this specific learning experience from material from Packt's Java 9 High Performance by Mayur Ramgir and Nick Samoylov
Table of Contents (9 chapters)
Java: High-Performance Apps with Java 9
Credits
Preface

Storing Interned Strings in CDS Archives


The main goal of this feature is to reduce memory footprint caused by creating new instances of string in every JVM process. All the classes that are loaded in any JVM process can be shared with other JVM processes via Class Data Sharing (CDS) archives.

Oh, I did not tell you about CDS. I think it's important to spend some time to understand what CDS is, so you can understand the underlying performance improvement.

Many times, small applications in particular spend a comparatively long time on startup operations. To reduce this startup time, a concept called CDS was introduced. CDS enables sharing of a set of classes loaded from the system JAR file into a private internal representation during the JRE installation. This helps a lot as then any further JVM invocations can take advantage of these loaded classes' representation from the shared archive instead of loading these classes again. The metadata related to these classes is shared among multiple JVM processes.

CDS stores strings in the form of UTF-8 in the constant pool. When a class from these loaded classes begins the initialization process, these UTF-8 strings are converted into String objects on demand. In this structure, every character in every confined string takes 2 bytes in the String object and 1 byte to 3 bytes in the UTF-8, which essentially wastes memory. Since these strings are created dynamically, different JVM processes cannot share these strings.

Shared strings need a feature called pinned regions in order to make use of the garbage collector. Since the only HotSpot garbage collector that supports pinning is G1; it only works with the G1 garbage collector.