Book Image

Hands-On Parallel Programming with C# 8 and .NET Core 3

By : Shakti Tanwar
Book Image

Hands-On Parallel Programming with C# 8 and .NET Core 3

By: Shakti Tanwar

Overview of this book

In today’s world, every CPU has a multi-core processor. However, unless your application has implemented parallel programming, it will fail to utilize the hardware’s full processing capacity. This book will show you how to write modern software on the optimized and high-performing .NET Core 3 framework using C# 8. Hands-On Parallel Programming with C# 8 and .NET Core 3 covers how to build multithreaded, concurrent, and optimized applications that harness the power of multi-core processors. Once you’ve understood the fundamentals of threading and concurrency, you’ll gain insights into the data structure in .NET Core that supports parallelism. The book will then help you perform asynchronous programming in C# and diagnose and debug parallel code effectively. You’ll also get to grips with the new Kestrel server and understand the difference between the IIS and Kestrel operating models. Finally, you’ll learn best practices such as test-driven development, and run unit tests on your parallel code. By the end of the book, you’ll have developed a deep understanding of the core concepts of concurrency and asynchrony to create responsive applications that are not CPU-intensive.
Table of Contents (22 chapters)
Free Chapter
1
Section 1: Fundamentals of Threading, Multitasking, and Asynchrony
6
Section 2: Data Structures that Support Parallelism in .NET Core
10
Section 3: Asynchronous Programming Using C#
13
Section 4: Debugging, Diagnostics, and Unit Testing for Async Code
16
Section 5: Parallel Programming Feature Additions to .NET Core

Introducing async and await

async and await are two very popular keywords among .NET Core developers writing asynchronous code with the new asynchronous APIs provided by .NET Framework. They are used for marking code when calling asynchronous operations. In the last chapter, we discussed the challenges of converting a synchronous method into an asynchronous one. Previously, we did this by breaking down the method into two methods, BeginMethodName and EndMethodName, which can be called asynchronously. This approach makes the code clumsy and difficult to write, debug, and maintain. With the async and await keywords, however, the code can stay how it was in the synchronous implementation, with only small changes required. All the difficult work of breaking down the method, executing the asynchronous method, and getting the response back to the program is done by the compiler.

All...