Book Image

Mastering Object-Oriented Python - Second Edition

By : Steven F. Lott
Book Image

Mastering Object-Oriented Python - Second Edition

By: Steven F. Lott

Overview of this book

Object-oriented programming (OOP) is a relatively complex discipline to master, and it can be difficult to see how general principles apply to each language's unique features. With the help of the latest edition of Mastering Objected-Oriented Python, you'll be shown how to effectively implement OOP in Python, and even explore Python 3.x. Complete with practical examples, the book guides you through the advanced concepts of OOP in Python, and demonstrates how you can apply them to solve complex problems in OOP. You will learn how to create high-quality Python programs by exploring design alternatives and determining which design offers the best performance. Next, you'll work through special methods for handling simple object conversions and also learn about hashing and comparison of objects. As you cover later chapters, you'll discover how essential it is to locate the best algorithms and optimal data structures for developing robust solutions to programming problems with minimal computer processing. Finally, the book will assist you in leveraging various Python features by implementing object-oriented designs in your programs. By the end of this book, you will have learned a number of alternate approaches with different attributes to confidently solve programming problems in Python.
Table of Contents (25 chapters)
Free Chapter
1
Section 1: Tighter Integration Via Special Methods
11
Section 2: Object Serialization and Persistence
17
Section 3: Object-Oriented Testing and Debugging

Summary, design considerations, and trade-offs

In this chapter, we looked at the essential ingredients of abstract base classes. We saw a few features of each kind of abstraction.

We also learned that one rule for good class design is to inherit as much as possible. We saw two broad patterns here. We also saw the common exceptions to this rule.

Some application classes don't have behaviors that overlap with internal features of Python. From our Blackjack examples, a Card isn't much like a number, a container, an iterator, or a context: it's just a playing card. In this case, we can generally invent a new class because there aren't any built-in features to inherit from.

When we look at Hand, however, we can see that a hand is clearly a container. As we noted when looking at hand classes in Chapters 2, The __init__() Method, and Chapter 3, Integrating Seamlessly...