Book Image

Learning RxJava - Second Edition

By : Nick Samoylov, Thomas Nield
Book Image

Learning RxJava - Second Edition

By: Nick Samoylov, Thomas Nield

Overview of this book

RxJava is not just a popular library for building asynchronous and event-based applications; it also enables you to create a cleaner and more readable code base. In this book, you’ll cover the core fundamentals of reactive programming and learn how to design and implement reactive libraries and applications. Learning RxJava will help you understand how reactive programming works and guide you in writing your first example in reactive code. You’ll get to grips with the workings of Observable and Subscriber, and see how they are used in different contexts using real-world use cases. The book will also take you through multicasting and caching to help prevent redundant work with multiple Observers. You’ll then learn how to create your own RxJava operators by reusing reactive logic. As you advance, you’ll explore effective tools and libraries to test and debug RxJava code. Finally, you’ll delve into RxAndroid extensions and use Kotlin features to streamline your Android apps. By the end of this book, you'll become proficient in writing reactive code in Java and Kotlin to build concurrent applications, including Android applications.
Table of Contents (22 chapters)
1
Section 1: Foundations of Reactive Programming in Java
5
Section 2: Reactive Operators
12
Section 3: Integration of RxJava applications
Appendix B: Functional Types
Appendix E: Understanding Schedulers

Dealing with SAM ambiguity

In Java, an interface with a single abstract method is called a functional interface. This means a functional interface in Java is SAM in Kotlin.

At the time of writing, when Kotlin invokes Java libraries with functional parameters, a problem may rear its head in RxJava 2.x when several overloads of the method with functional parameters are introduced. Kotlin does not have this issue when invoking Kotlin libraries, but it does with Java libraries. When there are multiple argument overloads for different functional SAM types on a given Java method, Kotlin gets lost in its inference and needs help. Until JetBrains resolves this issue, you will need to work around this either by being explicit or by using RxKotlin's helpers.

One of the most notorious examples is the zip() operator. Try to run the code as shown in the following example and you will...