Book Image

Modern C++ Programming Cookbook - Second Edition

By : Marius Bancila
5 (1)
Book Image

Modern C++ Programming Cookbook - Second Edition

5 (1)
By: Marius Bancila

Overview of this book

C++ has come a long way to be one of the most widely used general-purpose languages that is fast, efficient, and high-performance at its core. The updated second edition of Modern C++ Programming Cookbook addresses the latest features of C++20, such as modules, concepts, coroutines, and the many additions to the standard library, including ranges and text formatting. The book is organized in the form of practical recipes covering a wide range of problems faced by modern developers. The book also delves into the details of all the core concepts in modern C++ programming, such as functions and classes, iterators and algorithms, streams and the file system, threading and concurrency, smart pointers and move semantics, and many others. It goes into the performance aspects of programming in depth, teaching developers how to write fast and lean code with the help of best practices. Furthermore, the book explores useful patterns and delves into the implementation of many idioms, including pimpl, named parameter, and attorney-client, teaching techniques such as avoiding repetition with the factory pattern. There is also a chapter dedicated to unit testing, where you are introduced to three of the most widely used libraries for C++: Boost.Test, Google Test, and Catch2. By the end of the book, you will be able to effectively leverage the features and techniques of C++11/14/17/20 programming to enhance the performance, scalability, and efficiency of your applications.
Table of Contents (16 chapters)
Other Books You May Enjoy

Synchronizing access to shared data with mutexes and locks

Threads allow you to execute multiple functions at the same time, but it is often necessary that these functions access shared resources. Access to shared resources must be synchronized so that only one thread can read or write from or to the shared resource at a time. An example of this was shown in the previous recipe, where multiple threads had the ability to add objects to a shared container at the same time. In this recipe, we will see what mechanisms the C++ standard defines for synchronizing thread access to shared data and how they work.

Getting ready

The mutex and lock classes discussed in this recipe are available in the std namespace in the <mutex> header.

How to do it...

Use the following pattern for synchronizing access with a single shared resource:

  1. Define a mutex in the appropriate context (class or global scope):
    std::mutex g_mutex;
  2. Acquire a lock on this...