Book Image

Clean Code in Python - Second Edition

By : Mariano Anaya
Book Image

Clean Code in Python - Second Edition

By: Mariano Anaya

Overview of this book

Experienced professionals in every field face several instances of disorganization, poor readability, and testability due to unstructured code. With updated code and revised content aligned to the new features of Python 3.9, this second edition of Clean Code in Python will provide you with all the tools you need to overcome these obstacles and manage your projects successfully. The book begins by describing the basic elements of writing clean code and how it plays a key role in Python programming. You will learn about writing efficient and readable code using the Python standard library and best practices for software design. The book discusses object-oriented programming in Python and shows you how to use objects with descriptors and generators. It will also show you the design principles of software testing and how to resolve problems by implementing software design patterns in your code. In the concluding chapter, we break down a monolithic application into a microservices-based one starting from the code as the basis for a solid platform. By the end of this clean code book, you will be proficient in applying industry-approved coding practices to design clean, sustainable, and readable real-world Python code.
Table of Contents (13 chapters)
Other Books You May Enjoy

Creating generators

Generators were introduced in Python a long time ago (PEP-255), with the idea of introducing iteration in Python while improving the performance of the program (by using less memory) at the same time.

The idea of a generator is to create an object that is iterable, and, while it's being iterated, will produce the elements it contains, one at a time. The main use of generators is to save memory—instead of having a very large list of elements in memory, holding everything at once, we have an object that knows how to produce each particular element, one at a time, as it is required.

This feature enables lazy computations of heavyweight objects in memory, in a similar manner to what other functional programming languages (Haskell, for instance) provide. It would even be possible to work with infinite sequences because the lazy nature of generators enables such an option.

A first look at generators

Let's start with an...