Book Image

Quantum Computing with Silq Programming

By : Srinjoy Ganguly, Thomas Cambier
Book Image

Quantum Computing with Silq Programming

By: Srinjoy Ganguly, Thomas Cambier

Overview of this book

Quantum computing is a growing field, with many research projects focusing on programming quantum computers in the most efficient way possible. One of the biggest challenges faced with existing languages is that they work on low-level circuit model details and are not able to represent quantum programs accurately. Developed by researchers at ETH Zurich after analyzing languages including Q# and Qiskit, Silq is a high-level programming language that can be viewed as the C++ of quantum computers! Quantum Computing with Silq Programming helps you explore Silq and its intuitive and simple syntax to enable you to describe complex tasks with less code. This book will help you get to grips with the constructs of the Silq and show you how to write quantum programs with it. You’ll learn how to use Silq to program quantum algorithms to solve existing and complex tasks. Using quantum algorithms, you’ll also gain practical experience in useful applications such as quantum error correction, cryptography, and quantum machine learning. Finally, you’ll discover how to optimize the programming of quantum computers with the simple Silq. By the end of this Silq book, you’ll have mastered the features of Silq and be able to build efficient quantum applications independently.
Table of Contents (19 chapters)
Section 1: Essential Background and Introduction to Quantum Computing
Section 2: Challenges in Quantum Programming and Silq Programming
Section 3: Quantum Algorithms Using Silq Programming
Section 4: Applications of Quantum Computing

Chapter 1: Essential Mathematics and Algorithmic Thinking

Quantum computing utilizes the phenomena and properties of quantum mechanics to perform computational tasks. This is done using a quantum computer, which is made using the principles of quantum physics. Today, quantum computers are still in their early stages, but the field is rapidly evolving as more and more communities from different backgrounds get involved in the field. Quantum computers will soon be able to solve challenges that are too complex for classical computers.

This chapter is intended to develop your understanding of the mathematical concepts that are required for quantum computing. This will help you to understand the ideas behind the applications of mathematical concepts to quantum computation. We will cover the following topics:

  • Linear algebra
  • Coordinate systems, probability, and complex numbers
  • Computational thinking and computer algorithms
  • The time and space complexity of algorithms