Book Image

Expert Python Programming - Fourth Edition

By : Michał Jaworski, Tarek Ziadé
Book Image

Expert Python Programming - Fourth Edition

By: Michał Jaworski, Tarek Ziadé

Overview of this book

This new edition of Expert Python Programming provides you with a thorough understanding of the process of building and maintaining Python apps. Complete with best practices, useful tools, and standards implemented by professional Python developers, this fourth edition has been extensively updated. Throughout this book, you’ll get acquainted with the latest Python improvements, syntax elements, and interesting tools to boost your development efficiency. The initial few chapters will allow experienced programmers coming from different languages to transition to the Python ecosystem. You will explore common software design patterns and various programming methodologies, such as event-driven programming, concurrency, and metaprogramming. You will also go through complex code examples and try to solve meaningful problems by bridging Python with C and C++, writing extensions that benefit from the strengths of multiple languages. Finally, you will understand the complete lifetime of any application after it goes live, including packaging and testing automation. By the end of this book, you will have gained actionable Python programming insights that will help you effectively solve challenging problems.
Table of Contents (16 chapters)
14
Other Books You May Enjoy
15
Index

Multiprocessing

Let's be honest, multithreading is challenging. Dealing with threads in a sane and safe manner required a tremendous amount of code when compared to the synchronous approach. We had to set up a thread pool and communication queues, gracefully handle exceptions from threads, and also worry about thread safety when trying to provide a rate limiting capability. Dozens of lines of code are needed just to execute one function from some external library in parallel! And we rely on the promise from the external package creator that their library is thread-safe. Sounds like a high price for a solution that is practically applicable only for doing I/O-bound tasks.

An alternative approach that allows you to achieve parallelism is multiprocessing. Separate Python processes that do not constrain each other with the GIL allow for better resource utilization. This is especially important for applications running on multicore processors that are performing really CPU-intensive...