#### Overview of this book

Choosing the right data structure is pivotal to optimizing the performance and scalability of applications. This new edition of Hands-On Data Structures and Algorithms with Python will expand your understanding of key structures, including stacks, queues, and lists, and also show you how to apply priority queues and heaps in applications. You’ll learn how to analyze and compare Python algorithms, and understand which algorithms should be used for a problem based on running time and computational complexity. You will also become confident organizing your code in a manageable, consistent, and scalable way, which will boost your productivity as a Python developer. By the end of this Python book, you’ll be able to manipulate the most important data structures and algorithms to more efficiently store, organize, and access data in your applications.
Preface
Free Chapter
Python Data Types and Structures
Introduction to Algorithm Design
Algorithm Design Techniques and Strategies
Stacks and Queues
Trees
Heaps and Priority Queues
Hash Tables
Graphs and Algorithms
Searching
Sorting
Selection Algorithms
String Matching Algorithms
Other Books You May Enjoy
Index

# Exponential search

Exponential search is another search algorithm that is mostly used when we have large numbers of elements in a list. Exponential search is also known as galloping search and doubling search. The exponential search algorithm works in the following two steps:

1. Given a sorted array of n data elements, we first determine the subrange in the original list where the desired search item may be present
2. Next, we use the binary search algorithm to find out the search value within the subrange of data elements identified in step 1

Firstly, in order to find out the subrange of data elements, we start searching for the desired item in the given sorted array by jumping 2i elements every iteration. Here, i is the value of the index of the array. After each jump, we check if the search item is present between the last jump and the current jump. If the search item is present then we use the binary search algorithm within this subarray, and if it is not present...