Book Image

Python Object-Oriented Programming - Fourth Edition

By : Steven F. Lott, Dusty Phillips
2 (2)
Book Image

Python Object-Oriented Programming - Fourth Edition

2 (2)
By: Steven F. Lott, Dusty Phillips

Overview of this book

Object-oriented programming (OOP) is a popular design paradigm in which data and behaviors are encapsulated in such a way that they can be manipulated together. Python Object-Oriented Programming, Fourth Edition dives deep into the various aspects of OOP, Python as an OOP language, common and advanced design patterns, and hands-on data manipulation and testing of more complex OOP systems. These concepts are consolidated by open-ended exercises, as well as a real-world case study at the end of every chapter, newly written for this edition. All example code is now compatible with Python 3.9+ syntax and has been updated with type hints for ease of learning. Steven and Dusty provide a comprehensive, illustrative tour of important OOP concepts, such as inheritance, composition, and polymorphism, and explain how they work together with Python’s classes and data structures to facilitate good design. In addition, the book also features an in-depth look at Python’s exception handling and how functional programming intersects with OOP. Two very powerful automated testing systems, unittest and pytest, are introduced. The final chapter provides a detailed discussion of Python's concurrent programming ecosystem. By the end of the book, you will have a thorough understanding of how to think about and apply object-oriented principles using Python syntax and be able to confidently create robust and reliable programs.
Table of Contents (17 chapters)
15
Other Books You May Enjoy
16
Index

The Command pattern

When we think about class responsibilities, we can sometimes distinguish "passive" classes that hold objects and maintain an internal state, but don't initiate very much, and "active" classes that reach out into other objects to take action and do things. This is not a very crisp distinction, but it can help separate the relatively passive Observer and the more active Command design patterns. An Observer is notified that something changed. A Commander, on the other hand, will be active, making state changes in other objects. We can combine the two aspects, and that's one of the beauties of talking about a software architecture by describing the various patterns that apply to a class or a relationship among classes.

The Command pattern generally involves a hierarchy of classes that each do something. A Core class can create a command (or a sequence of commands) to carry out actions.

In a way, it's a kind of meta-programming...