Book Image

Python Object-Oriented Programming - Fourth Edition

By : Steven F. Lott, Dusty Phillips
2 (2)
Book Image

Python Object-Oriented Programming - Fourth Edition

2 (2)
By: Steven F. Lott, Dusty Phillips

Overview of this book

Object-oriented programming (OOP) is a popular design paradigm in which data and behaviors are encapsulated in such a way that they can be manipulated together. Python Object-Oriented Programming, Fourth Edition dives deep into the various aspects of OOP, Python as an OOP language, common and advanced design patterns, and hands-on data manipulation and testing of more complex OOP systems. These concepts are consolidated by open-ended exercises, as well as a real-world case study at the end of every chapter, newly written for this edition. All example code is now compatible with Python 3.9+ syntax and has been updated with type hints for ease of learning. Steven and Dusty provide a comprehensive, illustrative tour of important OOP concepts, such as inheritance, composition, and polymorphism, and explain how they work together with Python’s classes and data structures to facilitate good design. In addition, the book also features an in-depth look at Python’s exception handling and how functional programming intersects with OOP. Two very powerful automated testing systems, unittest and pytest, are introduced. The final chapter provides a detailed discussion of Python's concurrent programming ecosystem. By the end of the book, you will have a thorough understanding of how to think about and apply object-oriented principles using Python syntax and be able to confidently create robust and reliable programs.
Table of Contents (17 chapters)
15
Other Books You May Enjoy
16
Index

How much testing is enough?

We've already established that untested code is broken code. But how can we tell how well our code is tested? How do we know how much of our code is actually being tested and how much is broken? The first question is the more important one, but it's hard to answer. Even if we know we have tested every line of code in our application, we do not know that we have tested it properly. For example, if we write a stats test that only checks what happens when we provide a list of integers, it may still fail spectacularly if used on a list of floats, strings, or self-made objects. The onus of designing complete test suites still lies with the programmer.

The second question – how much of our code is actually being tested – is easy to verify. Code coverage is a count of the number of lines of code that are executed by a program. From the number of lines that are in the program as a whole, we know what percentage of the code...