Book Image

Python Object-Oriented Programming - Fourth Edition

By : Steven F. Lott, Dusty Phillips
2 (1)
Book Image

Python Object-Oriented Programming - Fourth Edition

2 (1)
By: Steven F. Lott, Dusty Phillips

Overview of this book

Object-oriented programming (OOP) is a popular design paradigm in which data and behaviors are encapsulated in such a way that they can be manipulated together. Python Object-Oriented Programming, Fourth Edition dives deep into the various aspects of OOP, Python as an OOP language, common and advanced design patterns, and hands-on data manipulation and testing of more complex OOP systems. These concepts are consolidated by open-ended exercises, as well as a real-world case study at the end of every chapter, newly written for this edition. All example code is now compatible with Python 3.9+ syntax and has been updated with type hints for ease of learning. Steven and Dusty provide a comprehensive, illustrative tour of important OOP concepts, such as inheritance, composition, and polymorphism, and explain how they work together with Python’s classes and data structures to facilitate good design. In addition, the book also features an in-depth look at Python’s exception handling and how functional programming intersects with OOP. Two very powerful automated testing systems, unittest and pytest, are introduced. The final chapter provides a detailed discussion of Python's concurrent programming ecosystem. By the end of the book, you will have a thorough understanding of how to think about and apply object-oriented principles using Python syntax and be able to confidently create robust and reliable programs.
Table of Contents (17 chapters)
Other Books You May Enjoy

Testing and development

One of the many ways these unit tests can help is when debugging application problems. When each unit seems to work in isolation, any remaining problems will often be the result of an improperly used interface between components. When searching for the root cause of a problem, a suite of passing tests acts as a set of signposts, directing the developer into the wilderness of untested features in the borderlands between components.

When a problem is found, the cause is often one of the following:

  • Someone writing a new class failed to understand an interface with an existing class and used it incorrectly. This indicates a need for a new unit test to reflect the right way to use the interface. This new test should cause the new code to fail its expanded test suite. An integration test is also helpful, but not as important as the new unit test focused on interface details.
  • The interface was not spelled out in enough detail, and both parties...