Book Image

Dancing with Python

By : Robert S. Sutor
Book Image

Dancing with Python

By: Robert S. Sutor

Overview of this book

Dancing with Python helps you learn Python and quantum computing in a practical way. It will help you explore how to work with numbers, strings, collections, iterators, and files. The book goes beyond functions and classes and teaches you to use Python and Qiskit to create gates and circuits for classical and quantum computing. Learn how quantum extends traditional techniques using the Grover Search Algorithm and the code that implements it. Dive into some advanced and widely used applications of Python and revisit strings with more sophisticated tools, such as regular expressions and basic natural language processing (NLP). The final chapters introduce you to data analysis, visualizations, and supervised and unsupervised machine learning. By the end of the book, you will be proficient in programming the latest and most powerful quantum computers, the Pythonic way.
Table of Contents (29 chapters)
2
Part I: Getting to Know Python
10
PART II: Algorithms and Circuits
14
PART III: Advanced Features and Libraries
19
References
20
Other Books You May Enjoy
Appendices
Appendix C: The Complete UniPoly Class
Appendix D: The Complete Guitar Class Hierarchy
Appendix F: Production Notes

11.7 Summary

In this chapter, we looked at classical linear and binary search. In the first case, the items in the collection were not ordered initially, and so we were forced to look at each item in turn to locate the one we sought. When we could assume the items were sorted, the binary search method was much more efficient as we could iteratively divide the problem size in half until we got our result. We then turned to one of the most accessible quantum algorithms, Grover search. Using Grover, the search time became proportional to the square root of the number of items.

An important caveat with the Grover algorithm is that quantum computers today cannot process large enough collections of data so that it is practically more efficient than classical methods. Nevertheless, it is an excellent example of where and how we might get a quantum advantage.