Book Image

Learn C Programming - Second Edition

By : Jeff Szuhay
Book Image

Learn C Programming - Second Edition

By: Jeff Szuhay

Overview of this book

The foundation for many modern programming languages such as C++, C#, JavaScript, and Go, C is widely used as a system programming language as well as for embedded systems and high-performance computing. With this book, you'll be able to get up to speed with C in no time. The book takes you through basic programming concepts and shows you how to implement them in the C programming language. Throughout the book, you’ll create and run programs that demonstrate essential C concepts, such as program structure with functions, control structures such as loops and conditional statements, and complex data structures. As you make progress, you’ll get to grips with in-code documentation, testing, and validation methods. This new edition expands upon the use of enumerations, arrays, and additional C features, and provides two working programs based on the code used in the book. What's more, this book uses the method of intentional failure, where you'll develop a working program and then purposely break it to see what happens, thereby learning how to recognize possible mistakes when they happen. By the end of this C programming book, you’ll have developed basic programming skills in C that can be easily applied to other programming languages and have gained a solid foundation for you to build on as a programmer.
Table of Contents (37 chapters)
1
Part 1: C Fundamentals
10
Part 2: Complex Data Types
19
Part 3: Memory Manipulation
22
Part 4: Input and Output
28
Part 5: Building Blocks for Larger Programs

Operations on arrays using pointers

Before this chapter, the only pointer operation we had used with arrays was assignment. Because we can perform simple arithmetic on pointers—addition and subtraction—these operations conveniently lend themselves to array traversal. 

Using pointer arithmetic

An integer value in pointer arithmetic represents the element to which the pointer points. When an integer is added to a pointer, the integer is automatically converted into the size of the pointer element in bytes and added to the pointer. This is equivalent to incrementing an array index. Put another way, incrementing a pointer is equivalent to incrementing the index of an array. 

Even though pointers are nearly identical to integers—they are positive, whole numbers that can be added, subtracted, and compared—they are treated slightly differently from integers when pointer arithmetic is performed. The following cases...