Book Image

Learn C Programming. - Second Edition

By : Jeff Szuhay
Book Image

Learn C Programming. - Second Edition

By: Jeff Szuhay

Overview of this book

The foundation for many modern programming languages such as C++, C#, JavaScript, and Go, C is widely used as a system programming language as well as for embedded systems and high-performance computing. With this book, you'll be able to get up to speed with C in no time. The book takes you through basic programming concepts and shows you how to implement them in the C programming language. Throughout the book, you’ll create and run programs that demonstrate essential C concepts, such as program structure with functions, control structures such as loops and conditional statements, and complex data structures. As you make progress, you’ll get to grips with in-code documentation, testing, and validation methods. This new edition expands upon the use of enumerations, arrays, and additional C features, and provides two working programs based on the code used in the book. What's more, this book uses the method of intentional failure, where you'll develop a working program and then purposely break it to see what happens, thereby learning how to recognize possible mistakes when they happen. By the end of this C programming book, you’ll have developed basic programming skills in C that can be easily applied to other programming languages and have gained a solid foundation for you to build on as a programmer.
Table of Contents (37 chapters)
1
Part 1: C Fundamentals
10
Part 2: Complex Data Types
19
Part 3: Memory Manipulation
22
Part 4: Input and Output
28
Part 5: Building Blocks for Larger Programs

Representing numbers with fractions

Not everything in the world is a whole number. For that, we have numbers with fractions or rational numbers. Rational numbers, represented as p/q where p is the numerator and q is the denominator, are most naturally used to measure things.

A rational number is represented on the computer with the following form:

significand x baseexponent

Here, both the significand and the exponent are signed integers, and the base depends upon the floating-point implementation. The size of each depends on the number of bytes for a given rational number type. There are no unsigned components. This provides a very large range of numbers, from positive to negative, as well as very small fractional values:

Typically, when real numbers are used, either very precise values are desired or the calculations tend to have incredibly large ranges.

Historical Note

Before C23, the floating-point library was implemented with a base 2...