Book Image

Effective .NET Memory Management

By : Trevoir Williams
Book Image

Effective .NET Memory Management

By: Trevoir Williams

Overview of this book

In today’s software development landscape, efficient memory management is crucial for ensuring application performance and scalability. Effective .NET Memory Management addresses this need by explaining the intricacies of memory utilization within .NET Core apps, from fundamental concepts to advanced optimization techniques. Starting with an overview of memory management basics, you’ll quickly go through .NET’s garbage collection system. You’ll grasp the mechanics of memory allocation and gain insights into the distinctions between stack and heap memory and the nuances of value types and reference types. Building on this foundation, this book will help you apply practical strategies to address real-world app demands, spanning profiling memory usage, spotting memory leaks, and diagnosing performance bottlenecks, through clear explanations and hands-on examples. This book goes beyond theory, detailing actionable techniques to optimize data structures, minimize memory fragmentation, and streamline memory access in scenarios involving multithreading and asynchronous programming for creating responsive and resource-efficient apps that can scale without sacrificing performance. By the end of this book, you’ll have gained the knowledge to write clean, efficient code that maximizes memory usage and boosts app performance.
Table of Contents (12 chapters)
9
Chapter 9: Final Thoughts

Memory Management Fundamentals

Memory management refers to controlling and coordinating a computer’s memory. Using proper memory management techniques, we can ensure that memory blocks are appropriately allocated across different processes and applications running in the operating system (OS).

An OS facilitates the interaction between applications and a computer’s hardware, enabling software applications to interface with a computer’s hardware and overseeing the management of a system’s hardware and software resources.

OSs orchestrate how memory is allocated across several processes and how space is moved between the main memory and the device’s disk during executions. The memory comprises blocks that are tracked during usage and freed after processes complete their operation.

While you may not need to understand all the inner workings of an OS and how it interacts with applications and hardware, it is essential to know how to write applications that make the best use of the facilities that OSs make available to us, so that we can author efficient applications.

In this chapter, we will explore the inner concepts of memory management and begin to explore, at a high level, the following topics:

  • The fundamentals of memory management
  • How garbage collection works
  • The pros and cons of memory management
  • The effects of memory management on application performance

By the end of this chapter, you should better appreciate the thought process that goes into ensuring that applications make the best use of memory, and you will understand the moving parts of memory allocation and deallocation.

Let’s begin with an overview of how memory management works.