Book Image

Advanced Python Programming

By : Dr. Gabriele Lanaro, Quan Nguyen, Sakis Kasampalis
Book Image

Advanced Python Programming

By: Dr. Gabriele Lanaro, Quan Nguyen, Sakis Kasampalis

Overview of this book

This Learning Path shows you how to leverage the power of both native and third-party Python libraries for building robust and responsive applications. You will learn about profilers and reactive programming, concurrency and parallelism, as well as tools for making your apps quick and efficient. You will discover how to write code for parallel architectures using TensorFlow and Theano, and use a cluster of computers for large-scale computations using technologies such as Dask and PySpark. With the knowledge of how Python design patterns work, you will be able to clone objects, secure interfaces, dynamically choose algorithms, and accomplish much more in high performance computing. By the end of this Learning Path, you will have the skills and confidence to build engaging models that quickly offer efficient solutions to your problems. This Learning Path includes content from the following Packt products: • Python High Performance - Second Edition by Gabriele Lanaro • Mastering Concurrency in Python by Quan Nguyen • Mastering Python Design Patterns by Sakis Kasampalis
Table of Contents (41 chapters)
Title Page
About Packt


In the field of computer science, deadlock refers to a specific situation in concurrent programming, in which no progress is made and the program is locked in its current state. In most cases, this phenomenon is caused by a lack of, or mishandled, coordination between different lock objects, and it can be illustrated with the Dining Philosophers problem.

Potential approaches to preventing deadlocks from occurring include imposing an order for the lock objects and sharing non-shareable resources by ignoring lock objects. Each solution addresses one of the four Coffman conditions, and, while both solutions can successfully prevent deadlocks, each raises different, additional problems and concerns.

Connected to the concept of deadlock is livelock. In a livelock situation, processes (or threads) in the concurrent program are able to switch their states, but they simply switch back and forth infinitely, and no progress is made. In the next chapter, we will discuss another common problem...