Book Image

Advanced Python Programming

By : Dr. Gabriele Lanaro, Quan Nguyen, Sakis Kasampalis
Book Image

Advanced Python Programming

By: Dr. Gabriele Lanaro, Quan Nguyen, Sakis Kasampalis

Overview of this book

This Learning Path shows you how to leverage the power of both native and third-party Python libraries for building robust and responsive applications. You will learn about profilers and reactive programming, concurrency and parallelism, as well as tools for making your apps quick and efficient. You will discover how to write code for parallel architectures using TensorFlow and Theano, and use a cluster of computers for large-scale computations using technologies such as Dask and PySpark. With the knowledge of how Python design patterns work, you will be able to clone objects, secure interfaces, dynamically choose algorithms, and accomplish much more in high performance computing. By the end of this Learning Path, you will have the skills and confidence to build engaging models that quickly offer efficient solutions to your problems. This Learning Path includes content from the following Packt products: • Python High Performance - Second Edition by Gabriele Lanaro • Mastering Concurrency in Python by Quan Nguyen • Mastering Python Design Patterns by Sakis Kasampalis
Table of Contents (41 chapters)
Title Page
Copyright
About Packt
Contributors
Preface
Index

Chapter 20. Starvation

In this chapter, we will discuss the concept of starvation and its potential causes in concurrent programming. We will cover a number of readers-writers problems, which are prime examples of starvation, and we will simulate them in example Python code. This chapter will also cover the relationship between deadlock and starvation, as well as some potential solutions for starvation.

 

The following topics will be covered in this chapter:

  • The basic idea behind starvation, its root causes, and some more relevant concepts
  • A detailed analysis of the readers-writers problem, which is used to illustrate the complexity of starvation in a concurrent system