Book Image

Getting Started with Python

By : Fabrizio Romano, Benjamin Baka, Dusty Phillips
Book Image

Getting Started with Python

By: Fabrizio Romano, Benjamin Baka, Dusty Phillips

Overview of this book

This Learning Path helps you get comfortable with the world of Python. It starts with a thorough and practical introduction to Python. You’ll quickly start writing programs, building websites, and working with data by harnessing Python's renowned data science libraries. With the power of linked lists, binary searches, and sorting algorithms, you'll easily create complex data structures, such as graphs, stacks, and queues. After understanding cooperative inheritance, you'll expertly raise, handle, and manipulate exceptions. You will effortlessly integrate the object-oriented and not-so-object-oriented aspects of Python, and create maintainable applications using higher level design patterns. Once you’ve covered core topics, you’ll understand the joy of unit testing and just how easy it is to create unit tests. By the end of this Learning Path, you will have built components that are easy to understand, debug, and can be used across different applications. This Learning Path includes content from the following Packt products: • Learn Python Programming - Second Edition by Fabrizio Romano • Python Data Structures and Algorithms by Benjamin Baka • Python 3 Object-Oriented Programming by Dusty Phillips
Table of Contents (31 chapters)
Title Page
Copyright and Credits
About Packt
Contributors
Preface
8
Stacks and Queues
10
Hashing and Symbol Tables
Index

Multiple inheritance


Multiple inheritance is a touchy subject. In principle, it's simple: a subclass that inherits from more than one parent class is able to access functionality from both of them. In practice, this is less useful than it sounds and many expert programmers recommend against using it.

Note

As a humorous rule of thumb, if you think you need multiple inheritance, you're probably wrong, but if you know you need it, you might be right.

The simplest and most useful form of multiple inheritance is called a mixin. A mixin is a superclass that is not intended to exist on its own, but is meant to be inherited by some other class to provide extra functionality. For example, let's say we wanted to add functionality to our Contact class that allows sending an email to self.email. Sending email is a common task that we might want to use on many other classes. So, we can write a simple mixin class to do the emailing for us:

class MailSender: 
    def send_mail(self, message): 
        print...