Book Image

Getting Started with Python

By : Fabrizio Romano, Benjamin Baka, Dusty Phillips
Book Image

Getting Started with Python

By: Fabrizio Romano, Benjamin Baka, Dusty Phillips

Overview of this book

This Learning Path helps you get comfortable with the world of Python. It starts with a thorough and practical introduction to Python. You’ll quickly start writing programs, building websites, and working with data by harnessing Python's renowned data science libraries. With the power of linked lists, binary searches, and sorting algorithms, you'll easily create complex data structures, such as graphs, stacks, and queues. After understanding cooperative inheritance, you'll expertly raise, handle, and manipulate exceptions. You will effortlessly integrate the object-oriented and not-so-object-oriented aspects of Python, and create maintainable applications using higher level design patterns. Once you’ve covered core topics, you’ll understand the joy of unit testing and just how easy it is to create unit tests. By the end of this Learning Path, you will have built components that are easy to understand, debug, and can be used across different applications. This Learning Path includes content from the following Packt products: • Learn Python Programming - Second Edition by Fabrizio Romano • Python Data Structures and Algorithms by Benjamin Baka • Python 3 Object-Oriented Programming by Dusty Phillips
Table of Contents (31 chapters)
Title Page
Copyright and Credits
About Packt
Stacks and Queues
Hashing and Symbol Tables

The abstract factory pattern

The abstract factory pattern is normally used when we have multiple possible implementations of a system that depend on some configuration or platform issue. The calling code requests an object from the abstract factory, not knowing exactly what class of object will be returned. The underlying implementation returned may depend on a variety of factors, such as current locale, operating system, or local configuration.

Common examples of the abstract factory pattern include code for operating-system-independent toolkits, database backends, and country-specific formatters or calculators. An operating-system-independent GUI toolkit might use an abstract factory pattern that returns a set of WinForm widgets under Windows, Cocoa widgets under Mac, GTK widgets under Gnome, and QT widgets under KDE. Django provides an abstract factory that returns a set of object relational classes for interacting with a specific database backend (MySQL, PostgreSQL, SQLite, and others...