Book Image

Getting Started with Python

By : Fabrizio Romano, Benjamin Baka, Dusty Phillips
Book Image

Getting Started with Python

By: Fabrizio Romano, Benjamin Baka, Dusty Phillips

Overview of this book

This Learning Path helps you get comfortable with the world of Python. It starts with a thorough and practical introduction to Python. You’ll quickly start writing programs, building websites, and working with data by harnessing Python's renowned data science libraries. With the power of linked lists, binary searches, and sorting algorithms, you'll easily create complex data structures, such as graphs, stacks, and queues. After understanding cooperative inheritance, you'll expertly raise, handle, and manipulate exceptions. You will effortlessly integrate the object-oriented and not-so-object-oriented aspects of Python, and create maintainable applications using higher level design patterns. Once you’ve covered core topics, you’ll understand the joy of unit testing and just how easy it is to create unit tests. By the end of this Learning Path, you will have built components that are easy to understand, debug, and can be used across different applications. This Learning Path includes content from the following Packt products: • Learn Python Programming - Second Edition by Fabrizio Romano • Python Data Structures and Algorithms by Benjamin Baka • Python 3 Object-Oriented Programming by Dusty Phillips
Table of Contents (31 chapters)
Title Page
Copyright and Credits
About Packt
Contributors
Preface
8
Stacks and Queues
10
Hashing and Symbol Tables
Index

The composite pattern


The composite pattern allows complex tree-like structures to be built from simple components. These components, called composite objects, are able to behave sort of like a container and sort of like a variable, depending on whether they have child components. Composite objects are container objects, where the content may actually be another composite object.

Traditionally, each component in a composite object must be either a leaf node (that cannot contain other objects) or a composite node. The key is that both composite and leaf nodes can have the same interface. The following UML diagram is very simple:

This simple pattern, however, allows us to create complex arrangements of elements, all of which satisfy the interface of the component object. The following diagram depicts a concrete instance of such a complicated arrangement:

The composite pattern is commonly useful in file/folder-like trees. Regardless of whether a node in the tree is a normal file or a folder, it...