Book Image

Getting Started with Python

By : Fabrizio Romano, Benjamin Baka, Dusty Phillips
Book Image

Getting Started with Python

By: Fabrizio Romano, Benjamin Baka, Dusty Phillips

Overview of this book

This Learning Path helps you get comfortable with the world of Python. It starts with a thorough and practical introduction to Python. You’ll quickly start writing programs, building websites, and working with data by harnessing Python's renowned data science libraries. With the power of linked lists, binary searches, and sorting algorithms, you'll easily create complex data structures, such as graphs, stacks, and queues. After understanding cooperative inheritance, you'll expertly raise, handle, and manipulate exceptions. You will effortlessly integrate the object-oriented and not-so-object-oriented aspects of Python, and create maintainable applications using higher level design patterns. Once you’ve covered core topics, you’ll understand the joy of unit testing and just how easy it is to create unit tests. By the end of this Learning Path, you will have built components that are easy to understand, debug, and can be used across different applications. This Learning Path includes content from the following Packt products: • Learn Python Programming - Second Edition by Fabrizio Romano • Python Data Structures and Algorithms by Benjamin Baka • Python 3 Object-Oriented Programming by Dusty Phillips
Table of Contents (31 chapters)
Title Page
Copyright and Credits
About Packt
Contributors
Preface
8
Stacks and Queues
10
Hashing and Symbol Tables
Index

Summary


In this chapter, we went into detail on several more design patterns, covering their canonical descriptions as well as alternatives for implementing them in Python, which is often more flexible and versatile than traditional object-oriented languages. The adapter pattern is useful for matching interfaces, while the facade pattern is suited to simplifying them. Flyweight is a complicated pattern and only useful if memory optimization is required. In Python, the command pattern is often more aptly implemented using first class functions as callbacks. Abstract factories allow runtime separation of implementations depending on configuration or system information. The composite pattern is used universally for tree-like structures.

In the next chapter, we'll discuss how important it is to test Python programs, and how to do it, focusing on object-oriented principles.