Book Image

Mastering Go - Second Edition

By : Mihalis Tsoukalos
Book Image

Mastering Go - Second Edition

By: Mihalis Tsoukalos

Overview of this book

Often referred to (incorrectly) as Golang, Go is the high-performance systems language of the future. Mastering Go, Second Edition helps you become a productive expert Go programmer, building and improving on the groundbreaking first edition. Mastering Go, Second Edition shows how to put Go to work on real production systems. For programmers who already know the Go language basics, this book provides examples, patterns, and clear explanations to help you deeply understand Go’s capabilities and apply them in your programming work. The book covers the nuances of Go, with in-depth guides on types and structures, packages, concurrency, network programming, compiler design, optimization, and more. Each chapter ends with exercises and resources to fully embed your new knowledge. This second edition includes a completely new chapter on machine learning in Go, guiding you from the foundation statistics techniques through simple regression and clustering to classification, neural networks, and anomaly detection. Other chapters are expanded to cover using Go with Docker and Kubernetes, Git, WebAssembly, JSON, and more. If you take the Go programming language seriously, the second edition of this book is an essential guide on expert techniques.
Table of Contents (20 chapters)
Title Page

Regression

Regression is a statistical method for calculating relationships among variables. This section will implement linear regression, which is the most popular and simplest regression technique and a very good way to understand your data. Note that regression techniques are not 100% accurate, even if you use higher-order (nonlinear) polynomials. The key with regression, as with most machine learning techniques, is to find a good enough technique and not the perfect technique and model.

Linear regression

The idea behind linear regression is simple: you are trying to model your data using a first-degree equation. A first-degree equation can be represented as y = a x + b.

There are many methods that allow you to find out that first...