Book Image

Mastering Go - Second Edition

By : Mihalis Tsoukalos
Book Image

Mastering Go - Second Edition

By: Mihalis Tsoukalos

Overview of this book

Often referred to (incorrectly) as Golang, Go is the high-performance systems language of the future. Mastering Go, Second Edition helps you become a productive expert Go programmer, building and improving on the groundbreaking first edition. Mastering Go, Second Edition shows how to put Go to work on real production systems. For programmers who already know the Go language basics, this book provides examples, patterns, and clear explanations to help you deeply understand Go’s capabilities and apply them in your programming work. The book covers the nuances of Go, with in-depth guides on types and structures, packages, concurrency, network programming, compiler design, optimization, and more. Each chapter ends with exercises and resources to fully embed your new knowledge. This second edition includes a completely new chapter on machine learning in Go, guiding you from the foundation statistics techniques through simple regression and clustering to classification, neural networks, and anomaly detection. Other chapters are expanded to cover using Go with Docker and Kubernetes, Git, WebAssembly, JSON, and more. If you take the Go programming language seriously, the second edition of this book is an essential guide on expert techniques.
Table of Contents (20 chapters)
Title Page

Garbage collection

Garbage collection is the process of freeing up memory space that is not being used. In other words, the garbage collector sees which objects are out of scope and cannot be referenced anymore, and frees the memory space they consume. This process happens in a concurrent way while a Go program is running and not before or after the execution of the program. The documentation of the Go garbage collector implementation states the following:

"The GC runs concurrently with mutator threads, is type accurate (also known as precise), allows multiple GC threads to run in parallel. It is a concurrent mark and sweep that uses a write barrier. It is non-generational and non-compacting. Allocation is done using size segregated per P allocation areas to minimize fragmentation while eliminating locks in the common case."

There is lots of terminology here that will...