Book Image

Mastering Go - Second Edition

By : Mihalis Tsoukalos
Book Image

Mastering Go - Second Edition

By: Mihalis Tsoukalos

Overview of this book

Often referred to (incorrectly) as Golang, Go is the high-performance systems language of the future. Mastering Go, Second Edition helps you become a productive expert Go programmer, building and improving on the groundbreaking first edition. Mastering Go, Second Edition shows how to put Go to work on real production systems. For programmers who already know the Go language basics, this book provides examples, patterns, and clear explanations to help you deeply understand Go’s capabilities and apply them in your programming work. The book covers the nuances of Go, with in-depth guides on types and structures, packages, concurrency, network programming, compiler design, optimization, and more. Each chapter ends with exercises and resources to fully embed your new knowledge. This second edition includes a completely new chapter on machine learning in Go, guiding you from the foundation statistics techniques through simple regression and clustering to classification, neural networks, and anomaly detection. Other chapters are expanded to cover using Go with Docker and Kubernetes, Git, WebAssembly, JSON, and more. If you take the Go programming language seriously, the second edition of this book is an essential guide on expert techniques.
Table of Contents (20 chapters)
Title Page

Go interfaces

Strictly speaking, a Go interface type defines the behavior of other types by specifying a set of methods that need to be implemented. For a type to satisfy an interface, it needs to implement all the methods required by that interface, which are usually not too many.

Putting it simply, interfaces are abstract types that define a set of functions that need to be implemented so that a type can be considered an instance of the interface. When this happens, we say that the type satisfies this interface. So, an interface is two things: a set of methods and a type, and it is used to define the behavior of other types.

The biggest advantage you get from having and using an interface is that you can pass a variable of a type that implements that particular interface to any function that expects a parameter of that specific interface. Without that amazing capability, interfaces...