Book Image

Mastering Go - Second Edition

By : Mihalis Tsoukalos
Book Image

Mastering Go - Second Edition

By: Mihalis Tsoukalos

Overview of this book

Often referred to (incorrectly) as Golang, Go is the high-performance systems language of the future. Mastering Go, Second Edition helps you become a productive expert Go programmer, building and improving on the groundbreaking first edition. Mastering Go, Second Edition shows how to put Go to work on real production systems. For programmers who already know the Go language basics, this book provides examples, patterns, and clear explanations to help you deeply understand Go’s capabilities and apply them in your programming work. The book covers the nuances of Go, with in-depth guides on types and structures, packages, concurrency, network programming, compiler design, optimization, and more. Each chapter ends with exercises and resources to fully embed your new knowledge. This second edition includes a completely new chapter on machine learning in Go, guiding you from the foundation statistics techniques through simple regression and clustering to classification, neural networks, and anomaly detection. Other chapters are expanded to cover using Go with Docker and Kubernetes, Git, WebAssembly, JSON, and more. If you take the Go programming language seriously, the second edition of this book is an essential guide on expert techniques.
Table of Contents (20 chapters)
Title Page

About UNIX processes

Strictly speaking, a process is an execution environment that contains instructions, user data and system data parts, and other types of resources that are obtained during runtime. On the other hand, a program is a binary file that contains instructions and data that are used for initializing the instruction and user data parts of a process. Each running UNIX process is uniquely identified by an unsigned integer, which is called the process ID of the process.

There are three categories of processes: user processes, daemon processes, and kernel processes. User processes run in user space and usually have no special access rights. Daemon processes are programs that can be found in the user space and run in the background without the need for a terminal. Kernel processes are executed in kernel space only and can fully access all kernel data structures.

The C way...