Book Image

Practical C Programming

By : B. M. Harwani
Book Image

Practical C Programming

By: B. M. Harwani

Overview of this book

Used in everything from microcontrollers to operating systems, C is a popular programming language among developers because of its flexibility and versatility. This book helps you get hands-on with various tasks, covering the fundamental as well as complex C programming concepts that are essential for making real-life applications. You’ll start with recipes for arrays, strings, user-defined functions, and pre-processing directives. Once you’re familiar with the basic features, you’ll gradually move on to learning pointers, file handling, concurrency, networking, and inter-process communication (IPC). The book then illustrates how to carry out searching and arrange data using different sorting techniques, before demonstrating the implementation of data structures such as stacks and queues. Later, you’ll learn interesting programming features such as using graphics for drawing and animation, and the application of general-purpose utilities. Finally, the book will take you through advanced concepts such as low-level programming, embedded software, IoT, and security in coding, as well as techniques for improving code performance. By the end of this book, you'll have a clear understanding of C programming, and have the skills you need to develop robust apps.
Table of Contents (20 chapters)

Types of graphs

Based on directions, graphs can be of two types: directed and undirected. Let's review both of them briefly.

Directed graphs

In a directed graph, the edges clearly show the direction from one vertex to another. An edge in a directed graph is usually represented as (v1, v2), which means that the edge is pointing from vertex v1 toward vertex v2. In other words, a (v1, v2) pair indicates that v1 is the starting vertex and v2 is the ending vertex. A directed graph is very useful in real-world applications and is used in the World Wide Web (WWW), Google's PageRank algorithm, and more. Consider the following directed graph:

Figure 10.1

Here, you can see an edge between vertices a and b. Because the edge...