Book Image

C++ System Programming Cookbook

By : Onorato Vaticone
Book Image

C++ System Programming Cookbook

By: Onorato Vaticone

Overview of this book

C++ is the preferred language for system programming due to its efficient low-level computation, data abstraction, and object-oriented features. System programming is about designing and writing computer programs that interact closely with the underlying operating system and allow computer hardware to interface with the programmer and the user. The C++ System Programming Cookbook will serve as a reference for developers who want to have ready-to-use solutions for the essential aspects of system programming using the latest C++ standards wherever possible. This C++ book starts out by giving you an overview of system programming and refreshing your C++ knowledge. Moving ahead, you will learn how to deal with threads and processes, before going on to discover recipes for how to manage memory. The concluding chapters will then help you understand how processes communicate and how to interact with the console (console I/O). Finally, you will learn how to deal with time interfaces, signals, and CPU scheduling. By the end of the book, you will become adept at developing robust systems applications using C++.
Table of Contents (13 chapters)

Revisiting C++

This chapter acts as a refresher on C++ 11-20, which will be used throughout this book. We'll explain why C++ represents a great opportunity that shouldn't be missed when it comes to writing good quality code that's concise and more portable than ever.

This chapter does not contain all the new features introduced by C++ (11 through 20) – just the ones we will be using for the rest of this book. Specifically, you'll get a refresher (if you already know) or learn (if you are new) about the most essential new C++ skills needed to write modern code. You'll work, hands-on, with lambda expressions, atomics, and move semantics, just to mention a few.

This chapter will cover the following recipes: 

  • Understanding C++ primitive types
  • Lambda expressions
  • Automatic type deduction and decltype
  • Learning how atomic...