Book Image

Hands-On Mathematics for Deep Learning

By : Jay Dawani
Book Image

Hands-On Mathematics for Deep Learning

By: Jay Dawani

Overview of this book

Most programmers and data scientists struggle with mathematics, having either overlooked or forgotten core mathematical concepts. This book uses Python libraries to help you understand the math required to build deep learning (DL) models. You'll begin by learning about core mathematical and modern computational techniques used to design and implement DL algorithms. This book will cover essential topics, such as linear algebra, eigenvalues and eigenvectors, the singular value decomposition concept, and gradient algorithms, to help you understand how to train deep neural networks. Later chapters focus on important neural networks, such as the linear neural network and multilayer perceptrons, with a primary focus on helping you learn how each model works. As you advance, you will delve into the math used for regularization, multi-layered DL, forward propagation, optimization, and backpropagation techniques to understand what it takes to build full-fledged DL models. Finally, you’ll explore CNN, recurrent neural network (RNN), and GAN models and their application. By the end of this book, you'll have built a strong foundation in neural networks and DL mathematical concepts, which will help you to confidently research and build custom models in DL.
Table of Contents (19 chapters)
1
Section 1: Essential Mathematics for Deep Learning
7
Section 2: Essential Neural Networks
13
Section 3: Advanced Deep Learning Concepts Simplified

Comparing Euclidean and non-Euclidean data

Before we learn about geometric deep learning techniques, it is important for us to understand the differences between Euclidean and non-Euclidean data, and why we need a separate approach to deal with it.

Deep learning architectures such as FNNs, CNNs, and RNNs have proven successful for a variety of tasks, such as speech recognition, machine translation, image reconstruction, object recognition and segmentation, and motion tracking, in the last 8 years. This is because of their ability to exploit and use the local statistical properties that exist within data. These properties include stationarity, locality, and compositionality. In the case of CNNs, the data they take as input can be represented in a grid form (such as images, which can be represented by matrices and tensors).

The stationarity, in this case (images), comes from the...